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Nematic model in the presence of a finite disorienting field: Integral equation approach

T. G. Sokolovska, R. O. Sokolovskii,* and M. F. Holovko
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A fluid of uniaxial particles in a disorienting field is considered as a simple model of biaxial nematics. The
model stability with respect to the spontaneous formation of a biaxial phase is investigated by means of the
integral equation method. The orientational instability condition is obtained explicitly and turns into known
results for the limiting cases of zero and of infinite fields. It is shown that the biaxiality induced by small fields
can expand considerably the region of spontaneously ordered fluid and could be useful to obtain mesomorphic
phases in nonmesogens. The effect of small disorienting fields is more pronounced in systems with short-range
anisotropic interactions between particles.
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Biaxial phases of nematic fluids compel more and m
attention. The point is that even a pure system of unia
molecules can form a biaxial nematic phase under the in
ence of a certain external factors. This takes place near
interface with the other medium~wall! if nematic molecules
prefer to be parallel to the surface plane@1#. The biaxiality
can be induced also by a disorienting field@2#. It can be
either the electric or the magnetic field since many nema
have a negative anisotropy, and the molecules tend to a
perpendicularly to the field@3,4#. In this case a spontaneou
ordering forms a structure having two principal direction
~1! the direction of a disorienting field; and~2! the direction
of spontaneous orderingn̂ lying in the plane that is perpen
dicular to the field direction. The biaxiality induced b
strong fields appears to cause significant changes of phy
properties. In particular, the orientational phase transit
changes its order from the first to the second one@2#. It was
found @5# that the biaxiality induced by strong fields signifi
cantly increases the temperature-pressure region of spon
ously ordered fluid. Its ordering and elastic properties
crease also. Since the important technical problem
applications of anisotropic fluids is to expand the orde
fluid region and to increase the anisotropic properties,
induced biaxiality can be interesting from the practical po
of view. For example, the induced biaxiality can be usefu
obtain mesomorphic phases in nonmesogens~systems that do
not display liquid crystalline behavior usually!. Recently,
nematic phases were found in para-dimethylbenzene. M
ecules of para-dimethylbenzene are nonpolar and prefer t
parallel to the surface prepared in a special way. It w
shown @6# that near such a surface hundreds of molecu
layers demonstrate a uniform nematic ordering with a dir
tor parallel to the surface. The orientational ordering in t
nonmesogen can be explained as a result of biaxiality
duced by the surface.

In Ref. @5# a nonpolar nematic model was investigated
the infinite disorienting field, when the molecules are co
strained to orient perpendicularly to the field direction. W
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increasing density~or decreasing temperature! the system
demonstrates spontaneous ordering into a limiting bia
phase. For this problem an analytical solution of t
Ornstein-Zernike~OZ! equation was obtained@5#. The cal-
culated phase diagrams and elastic constants for the infi
field case were compared with the usual case of a unia
nematic ordering at zero field. It was shown, for examp
that the infinite disorienting field makes the pressure of sp
taneous nematic ordering four to five times less. Thus, str
disorienting fields do favor a nematic ordering. But the qu
tion arises about the strength of the field needed to ach
significant changes of the physical properties. To clarify t
point one has to investigate the general case of mode
biaxiality induced by finite external fields.

In this paper we study the phase transition into a biax
nematic phase in the presence of finite fields. We shall c
sider this biaxial phase as the ‘‘oriented’’ one. The pha
without the spontaneous ordering will be referred to as
‘‘nonoriented’’ one, though the latter phase possesse
uniaxial anisotropy induced by the external field. We use
integral equation method here. This approach does not
pose any approximation other than a closure for the
equation and allows to treat correlations~including the long-
range ones! correctly. One can estimate the influence of t
field of a given strength on the region of the spontaneou
ordered phase by calculating the limit of orientational stab
ity of the ‘‘nonoriented’’ phase with respect to the ‘‘ori
ented’’ one. It is this limit that is calculated and analyzed
the present paper.

I. MODEL

As a simple biaxial nematic model we propose a syst
of uniaxial molecules in the disorienting fieldW, where the
potential of the molecule interaction with the field is

v~1!5v~v1!5W
3 cos2u121

2
, W.0, ~1.1!

v i5(u i ,w i) being the orientation of moleculei. The above
formula assumes that the field is directed along thez axis and
d-
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SOKOLOVSKA, SOKOLOVSKII, AND HOLOVKO PHYSICAL REVIEW E64 051710
states that molecule orientations along the field direction
energetically unfavorable (W.0). The pair potential is a
sum of the hard-sphere potential for spheres of diametes
and of the anisotropic partv(1,2),

v~1,2!5v2~R12!
3 cos2v1221

2
, ~1.2!

where v12 is the angle between the preferred axes of
molecules,R12 is the distance between the molecule ma
centers, and

v2~R12!52K
~zs!2

zs11

exp@2z~R122s!#

R12/s
. ~1.3!

In the above formula the coefficient (zs)2/(zs11) is placed
in order to make the integral*s

`v(1,2)R12
2 dR12 independent

of zs. Therefore, within the mean field approach the therm
dynamics of the model is independent ofzs. Thus,K is a
natural energy unit in this model. In the absence of the fi
(W50) the model coincides with the one that was propo
in Ref. @7# for a uniaxial nematic. In the presence of a
orienting field (W,0) the system can exhibit only uniaxia
paranematic and nematic phases. WhenW.0, the same sys
tem provides the phase transition into a biaxial nema
phase. At strong disorienting fields (W@0) the molecules
align perpendicularly to the field, and the phase transit
into a limiting biaxial phase takes place@5#.

We should note some peculiarities about the disorien
field case. Even very weak disorienting fields (W→10)
produce a negative anisotropy along thez axis, because pre
ferred axes of molecules tend to lie in theXY plane that
is perpendicular to the anisotropy axis. Thus, a nega
uniaxial nematic phase (Nu

2) of ‘‘easy plane’’ type appears
~see Table 4 of Ref.@3# and Sec. 10.2.3 of Ref.@4#!. The
order parameter of any uniaxial nematic is usually chose
an ensemble average of the second order Legendre po
mial: Sz5^P2(cosu)&5^3 cos2u21&/2, whereu is the angle
between the preferred axis of the molecule and the sys
anisotropy axis. In the isotropic caseSz[0, in theNu

2 phase
Sz is negative, since particle orientations along the field
rection are energetically unfavorable. At strong disorient
fields (W→`) all the molecules align perpendicularly to th
field (u5p/2), andSz[21/2. In theNu

2 phase, neverthe
less, the orientational ordering in theXY planeis absent. By
increasing the system density~or decreasing the temperatur!
a preferred direction in theXY plane appears, and the pha
transition into a biaxial phase takes place. The directorn̂ of
the spontaneous ordering can rotate without any energy
in theXY plane. Next, to be very explicit, we shall choosen̂
along thex axis. In contrast to the induced order parame
Sz , the order parameter describing spontaneous orderin
the x direction will be positive.

II. THE SINGLE-PARTICLE DISTRIBUTION FUNCTION
IN THE UNIAXIAL NONORIENTED PHASE

In order to investigate the uniaxial~nonoriented! phase we
can use the results of@8#, where the general case of uniaxi
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fluids in the presence of an external field was considered.
orientational distribution is calculated in@8# from the Lovett
equation for anisotropic fluids@9#

“v1
ln r~1!1“v1

v~1!

kBT
5E c~1,2!“v2

r~2!d~2!,

~2.1!

where“v1
is an angular gradient operator;v(1) is a poten-

tial of interaction with a uniform external field, its spheric
harmonic expansion is of the form

v~1!52(
l

v lYl0~v1!, ~2.2!

r(1)5r f (v1), and f (v1) is a single-particle distribution
function. Using the general expansion for the direct corre
tion function of linear molecules

c~1,2!5(
mnl
mnl

cmnl
mnl~R!Ymm~v1!Ynn* ~v2!Yll~vR! ~2.3!

and the exponential form of the one-particle distributi
function

f ~v!5Z21 expF(
l .0

AlYl0~v!G , ~2.4!

one can obtain following Ref.@8# an algebraic representatio
of the Lovett equation for a uniaxial fluid in the extern
field,

Ll5(
mn

ClmYmnLn1Vl5(
m

ClmPm1Vl , ~2.5!

where all indices take positive integer values,Vl5v l /kBT,
Cmn5*cmn0

110 (R)dR, Ymn5r^Ym1(v)Yn1* (v)&v , ^•••&v

5* f (v)(•••)dv, Ll5Al ( l 11)Al , and Pl

5rAl ( l 11)(2l 11)^Pl(cosu)&v , Pl(cosu) is the l th order
Legendre polynomial. Let us note that the average val
^Pl(cosu)&v play the role of order parameters in uniaxi
anisotropic fluids. Relations~2.5! are accurate, and their us
as well as the use of the integrodifferential equation~2.1!,
does not introduce any approximation into the theory.

It is customary to consider the OZ equation as a definit
for the direct correlation function. Sometimes, one can av
a solution of the OZ equation and expressc(1,2) via a pair
interaction potentialf(1,2). For example, for very long
range and weak interactions~such as those described by th
Kac potential! the direct correlation function in the mea
field form c(1,2)52f(1,2)/kBT equals the exact one; in th
zero-density limitc(1,2) may be written as the Mayer func
tion f (1,2)5exp(2f(1,2)/kBT)21. It should be noted tha
in these limiting cases the symmetry ofc(1,2) coincides with
the pair potential symmetry. But in a general case the dir
correlation function of an orientationally ordered fluid los
the rotational invariance intrinsic in the pair potential a
reflects the symmetry of the whole system. In this gene
casec(1,2) should be found from the OZ equation
0-2
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NEMATIC MODEL IN THE PRESENCE OF A FINITE . . . PHYSICAL REVIEW E 64 051710
h~1,2!5c~1,2!1E r~3!h~1,3!c~3,2!d~3!, ~2.6!

h(1,2) is the total correlation function of the system, a
d(3)5dR3dv3.

Due to representation~2.5! it appears to be possible t
obtain for our model in the nonoriented phase an analyt
solution of the anisotropic OZ equation~2.6! within the
mean spherical closure approximation~MSA!,

c~1,2!52v~1,2!/kBT, R12.s,

h~1,2!521, R12,s. ~2.7!

We have to recall that according to Monte Carlo simulatio
for our model potential the MSA provides the most reliab
description of the model thermodynamics@10,11#. Condition
~2.7! for h(1,2) follows directly from the fact that hard
spheres do not overlap. The mean spherical closure~2.7!
restricts correlation functions of our model to have the fo

f ~1,2!5 (
l 1l 2m

f l 1l 2m~R12!Yl 1m~v1!Yl 2m* ~v2!, ~2.8!

( l 1 ,l 250,2), and representation~2.5! results in equalities

A25A2r^uY21~v!u2&vE c221~R!dR2bW,

A25r^Y20~v!&vE c221~R!dR2bW. ~2.9!

Thus, the use of the mean spherical closure yields for
model’s vanishing of coefficientsAl with l .2 in Eq. ~2.4!,
and the self-consistent one-particle distribution function
the MSA takes the form

f ~v!5exp@A2Y20~v!#Y E exp@A2Y20~v!#dv.

~2.10!

A uniaxial symmetry of our system leads to factorization
Eq. ~2.6! on the equations with differentm. At m561, 62,

h22m~R12!5c22m~R12!

1r^uY2m~v!u2&vE c22m~R13!h22m~R32!dR3 .

~2.11!

For m50 we have a system of integral equations that a
the Fourier transformation gains the matrix form

Hi j ~k!5Ci j ~k!1(
i 8 j 8

Cii 8~k!r i 8 j 8H j 8 j~k!, ~2.12!

where Hi j (k)5hi j 0(k), Ci j (k)5ci j 0(k), and r i j
5r^Yi0(v)Yj 0(v)&v , indices take the values 0 and 2.

Equations~2.9! and ~2.11! for m561 within the MSA
for the corresponding harmonics
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h22m~R12!50, R12,s,

c22m~R12!5bK
~zs!2

zs11

exp@2z~R122s!#

5R12/s
, R12.s

~2.13!

constitute a complete system now. It allows us to obt
^uY21u2&v as a function of the model parametersbK, zs, W
andh5prs3/6. The solution of Eq.~2.11! under conditions
~2.9! determines the single-particle distribution function
the MSA. By the factorization method of Baxter and We
theim ~see@10,12#! the integral equation~2.11! for m51 can
be reduced to a system of algebraic equations,

12

5
h̃bK

exp~zs!

zs11
5D̃@12Q̃~z!#, ~2.14!

2pg̃221~z!@12Q̃~z!#5
1

2
exp~22zs!@122pg̃221~z!#D̃,

~2.15!

2C̃5@122pg̃221~z!#D̃, ~2.16!

whereh̃5h^uY21(v)u2&v , D̃ andC̃ are dimensionless coef
ficients of the factor correlation function

Q~R!5
z

r^uY21~v!u2&v

@Q0~R!1D̃ exp~2zR!#

~2.17!

with the short-range part

Q0~R!5C̃@exp~2zR!2exp~2zs!#, R,s,
~2.18!

Q0~R!50, R.s. ~2.19!

Q̃(z) and g̃221(z) are the dimensionless Laplace transform
of Q(R) andh221(R), respectively,

Q̃~z!5r^uY21~v!u2&vE
0

`

e2ztQ~ t !dt,

g̃221~z!5
r^uY21~v!u2&v

z E
s

`

e2zth221~ t !tdt. ~2.20!

From the definition of the factor correlation function it fo
lows that

12r^uY21~v!u2&vE c221~R!dR5@Q~k50!#2,

~2.21!

whereQ(k) is defined by the expression

Q~k!512r^uY21~v!u2&vE
0

`

dReikRQ~R!. ~2.22!
0-3



l

ls

q
n
e

s
qs.

f
he

av-

is-
ow
ted
into

to

SOKOLOVSKA, SOKOLOVSKII, AND HOLOVKO PHYSICAL REVIEW E64 051710
The joint use of Eqs.~2.21! and~2.9! gives us the additiona
equation to determinêuY21(v)u2&v ,

Q~k50!5A2bW

A2
. ~2.23!

In a more explicit form the above equation reads

V5D̃1dC̃, V512A2bW

A2
, ~2.24!

whered5e2zsD1(zs). Here and below we use the symbo

Dn~x!5exp~x!2(
l 50

n
1

l !
xl . ~2.25!

Formulas~2.24!, ~2.15!, and~2.16! allow to determineD̃,

D̃5
2b2Ab224ac

2a
, ~2.26!

where

a52d exp~22zs!2~d21!@d2VD0
2~2zs!#,

c5V@2d2VD0
2~2zs!#,

b5~d21!c/V1V@VD0
2~2zs!2d#1dV exp~22zs!.

~2.27!

It should be noted that the signs before square roots in E
~2.23! and~2.26! are chosen to provide the physical solutio

Now from Eq. ~2.14! we can obtain the dependence b
tween the ordering parameter^uY21(v)u2&v and the system
parametersh, bK, bW/A2, andzs,

bKh^uY21~v!u2&v5 f ~zs,V!,

f ~zs,V!5
5

24
D̃F22

VD0
2~2zs!

d

2D̃H 12
D0

2~2zs!

d J G zs11

exp~zs!
. ~2.28!
05171
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A solution of Eq. ~2.28! with ^uY21(v)u2&v

[^ 15
2 sin2u cos2u&v , where averaginĝ •••&v is made with

the self consistentf (v) defined by Eq.~2.10!, gives us
^uY21(v)u2&v and A2. Further calculation of average value
can be carried out in a simple arithmetic way. First, E
~2.9! yield A25^Y20(v)&v /^uY21(v)u2&v . Thus, one obtains
^P2(cosu)&v[^Y20(v)&v /A5 expressed in terms o
^uY21(v)u2&v and A2. On the other hand, one can use t
well-known expressions foruY2m(v)u2 in terms of Legendre
polynomials~see, for example,@13#!,

uY21~v!u2511
5

7
P2~cosu!2

12

7
P4~cosu!,

uY22~v!u2512
10

7
P2~cosu!1

3

7
P4~cosu!,

and expresŝuY22(v)u2&v via ^uY21(v)u2&v andA2,

^uY22~v!u2&v[ K 15

8
sin4u L

v

5
5

4 S 12
A2^uY21u2&v

A5
2

^uY21u2&v

5 D .

~2.29!

In an analogous way, one can find the last orientational
erage contained in Eq.~2.12!,

^uY20~v!u2&v511
10

7
^P2~cosu!&v1

18

7
^P4~cosu!&v .

III. THE STABILITY OF THE MODEL

In the previous section we obtained the single-particle d
tribution function and, therefore, all order parameters. N
we can investigate the stability condition of the nonorien
uniaxial phase with respect to the spontaneous ordering
the biaxial nematic. A problem of this kind for the caseW
50 and the pair potential~1.2! and ~1.3! was solved in the
well-known paper by Kloczkowski and Stecki@7#. The local
stability condition of the isotropic phase with respect
uniaxial variations of the distribution function
re
FIG. 1. Orientational instability lines for dif-
ferent ranges of the pair potential:~a! zs50.1;
~b! zs52. The numbers attached to the lines a
values of the disorienting fieldW/K.
0-4
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dr~ i !5 (
L50

`

sLPL~cosu i ! ~3.1!

was written in Ref.@7#,

E d~1!d~2!Fd~1,2!

r/4p
2c~1,2!Gdr~1!dr~2!.0, ~3.2!

wherec(1,2) was the direct correlation function of the is
tropic phase. More general stability conditions of nema
phases were discussed in@14,12#. It is worth noting that the
stability condition of nematics at zero field has some spe
features. The point is that rotations of the director of sp
taneous ordering do not change the nematic free energy.
results in Goldstone mode singularities that are conne
with the long-range correlations of the director fluctuatio
A detailed discussion of these singularities within the in
gral equation approach was presented in@10,12,14#. Here we
quote the stability condition in the presence of the field (W
.0),

E d~1!d~2!@d~1,2!2c~1,2!r~1!#dr* ~1!dr~2!.0,

~3.3!

where r(1) and c(1,2) are the single-particle distributio
function and the direct correlation function of the no
oriented uniaxial fluid, * means a complex conjugation, a

dr~1!5(
lm

D lmYlm~v1! ~3.4!

is a general orientational variation of the distribution fun
tion.

Any nonpolar biaxial phase is characterized by tw
nontrivial order parameters:Sz5^P2(cosui)&B and Sx
5^sin2ui cos(2wi)&B , and Sx is proportional to ^Y22(v1)
1Y22* (v1)&B . The subscriptB means the averaging with
biaxial orientational distributionrB(1). To obtain the stabil-

FIG. 2. The order parameterSz5^(3 cos2u21)/2&v in the insta-
bility points for finite fields W/K. Thin lines correspond tozs
50.1; thick lines show the results forzs52.
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ity condition with respect to the biaxial phase we can co
sider variationsdr(1)5rB(1)2r(1) in Eq. ~3.3!. These
variations can contain terms like Eq.~3.1! that describe fluc-
tuations ofSz and can have terms of a new type,

dr~1!;Sx@Y22~v1!1Y22* ~v1!#, ~3.5!

that describe fluctuations connected with appearance of
new biaxial symmetry. We note that in Eq.~3.5! we retained
only the lowest term. Inserting these simplest variations i
Eq. ~3.3! and taking into account the MSA form of the dire
correlation function~2.8!, one obtains

12^uY22u2&vrE c222~R!dR.0. ~3.6!

In other words, the system becomes orientationally unsta
with respect to spontaneous biaxial nematic ordering at

12^uY22u2&vrE c222~R!dR50. ~3.7!

In order to obtain condition~3.7! in an explicit and analytical
form, one can use results and the method of the previ
section. The factorization method applied to Eq.~2.11! with
m52 yields the same system~2.14!–~2.16! that we got for
m561 with the only difference:h̃5h^uY22(v)u2&v . Equa-
tion ~3.7! gives an additional condition like Eq.~2.24!, but
with V51,

15D̃1dC̃. ~3.8!

As a result one obtains an explicit form for Eq.~3.7!

K

kBT̄
h̄^uY22~v!u2&v5 f ~zs,V51!, ~3.9!

where equilibrium^uY22(v)u2&v has to be calculated from
Eqs.~2.29! and ~2.28! at temperatureT̄ and densityh̄ for a
given fieldW̄. If Eq. ~3.9! is satisfied, it means that (T̄, h̄,
W̄) is an instability point.

IV. RESULTS AND CONCLUSIONS

Let us consider Eq.~3.9! in two limiting cases, when one
can do without Eqs.~2.29! and ~2.28!. At zero field (W
→0) the nonoriented phase coincides with the isotro

TABLE I. Temperature of instability ath50.3 for different
ranges of interactionzs and its growth in an external disorientin
field ~the field strengthW/K is specified in parentheses aftert
5kBT/K).

zs t(0) t(0.1)/t(0) t(1)/t(0) t(5)/t(0) t(`)/t(0)

0.1 1.44 1.16 1.43 1.68 15/8
2 1.11 1.23 1.50 1.72 15/8
0-5
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phase, and̂uY22(v)u2&v[1. In this case Eq.~3.9! gives the
instability condition of the isotropic phase with respect to t
nematic phase formation@7,12#. At the infinite field (W
→`) ^uY22(v)u2&v[15/8, and Eq.~3.9! transforms into the
instability condition with respect to the limiting biaxial phas
@5#. In both the cases (K/kBT̄)h̄ depends onzs only. There-
fore, the corresponding instability points lie on straight lin
in the temperature-density coordinates~see Fig. 1!. This is a
consequence of a symmetry of the MSA solution we fou
in the previous section: Eq.~2.28! shows that at fixed
(K/kBT)h and (W/kBT) the orientational distribution is
fixed, and the equilibrium value of^uY22(v)u2&v is constant.
Then, it follows from orientational instability condition~3.9!
that if we change the field strengthW proportionally to the
temperature~keeping W/kBT constant!, the orientational
instability points will belong to a straight line in th
temperature-density coordinates. AtW50 and atW5` any
temperature scaling does not changeW/kBT, which results in
straight instability lines at the fixed field strength. The si
ation differs at a finiteW. In this case the orientational dis
tribution in orientational instability points~and all its mo-
ments ^•••&v) depends on both the temperature and
density. Therefore, instability points in the general case
on a curve.

In Fig. 2 the order parameterSz in instability points is
plotted against the temperature at different values of the fi
W/K50.1; 1; 5. Let us note thatSz equals 0 atW/K50, and
Sz equals21/2 at W/K5`. One can see that the effect o
the field onSz in instability points is stronger in the case
a short-range potential (zs52). The difference between th
field effects at differentzs is especially noticeable for wea
fields and high temperatures. At low temperatures or str
fields the results for differentzs are hardly distinguishable
It follows also from Fig. 2 that at low temperaturesSz tends
to 21/2 for all fields. It means that at low enough tempe
tures even a weak field forces molecules to lie in theXY
plane, as very strong fields do.

Figure 1 presents the set of instability lines, at which
system becomes orientationally unstable with respect to
spontaneously ordered phase. This phase is biaxial atW.0
and is uniaxial atW50. One can see in Fig. 1 that th
disorienting field raises the instability line~in other words,
favors the orientational ordering!, and the effect of finite
fields is stronger in the system with shorter ranges of
anisotropic potential (zs52). The latter fact is also illus-
trated by Table I. For example, the fieldW50.1K raises the
instability temperature by 23% forzs52, whereas forzs
50.1 the increase is 16%. One can see from our results
the disorienting field influence in systems with short-ran
anisotropic interactions can lead to qualitative chang
For example, in Fig. 1~b! for zs52 at kBT/K52.5 the
zero-field instability line is in the dense packing region. T
disorienting field shifts the orientational instability and c
place the spontaneous nematic ordering before the sy
crystallization: atkBT/K52.5 the densities of orientationa
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instability are h50.57 at W/K50.1 and h50.47 at
W/K51.

Small fields in the region of small densities~and low tem-
peratures! produce orientationally ordered phases very e
ciently. In Fig. 1 all curves for nonzero fields coincide
very low temperatures. But, it is expected that instabil
lines in this region are under the gas-liquid binodal. The
fore, this point needs an additional investigation as it w
done forW50 @15# andW5` @5# cases. On the other hand
the undesirable condensation can be suppressed, for
ample, by inclusion of an additional isotropic repulsion b
tween particles.

In this paper we studied a system of uniaxial partic
placed in an external disorienting field. Such a system de
onstrates an orientational instability with respect to a sp
taneous formation of the biaxial nematic phase. Using
integral equation method we derived the orientational ins
bility condition in an explicit form, which permitted to stud
the effect of the disorienting external field on the region
the spontaneously ordered nematic phase. This cond
turns into known results for the limiting cases of zero
infinite fields. The instability lines we obtained coincide wi
the biaxial ordering lines if the phase transition is of t
second order. This actually takes place for strong eno
fields.

Our calculation shows that even small disorienting fie
significantly raise the instability temperature and, therefo
noticeably favor the nematic phase. The effect of small fie
appears to be especially visible in the systems with sh
range anisotropic interactions between particles. It turns
that even weak disorienting fields (W less than 0.1kBT) sig-
nificantly favor a nematic ordering. The point is that th
disorienting field transforms the system symmetry and
stricts the orientation space where particles can be pre
with some probability. The stronger the field, the mo
peaked atu5p/2 the orientational distribution is. Orienta
tional fluctuations act against the field influence and wea
the induced ordering. Their role is very noticeable for we
fields, of course. There is a peculiarity about the case
disorienting fields: only one orientational fluctuation~in the
field direction! counteracts the induced ordering with
negative order parameterSz . Thus, weak disorienting
fields can restrict the effective angle space efficiently eno
and, eventually, further the spontaneous ordering i
the biaxial phase. In practice it is small fields that a
usually employed. Therefore, we believe that disorient
fields of different origins can be useful in various applic
tions of anisotropic fluids, besides broadly used orient
fields.
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