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Nematic model in the presence of a finite disorienting field: Integral equation approach
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A fluid of uniaxial particles in a disorienting field is considered as a simple model of biaxial nematics. The
model stability with respect to the spontaneous formation of a biaxial phase is investigated by means of the
integral equation method. The orientational instability condition is obtained explicitly and turns into known
results for the limiting cases of zero and of infinite fields. It is shown that the biaxiality induced by small fields
can expand considerably the region of spontaneously ordered fluid and could be useful to obtain mesomorphic
phases in nonmesogens. The effect of small disorienting fields is more pronounced in systems with short-range
anisotropic interactions between particles.
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Biaxial phases of nematic fluids compel more and moreancreasing densityor decreasing temperatyréhe system
attention. The point is that even a pure system of uniaxialemonstrates spontaneous ordering into a limiting biaxial
molecules can form a biaxial nematic phase under the influphase. For this problem an analytical solution of the
ence of a certain external factors. This takes place near th@rnstein-Zernike(OZ) equation was obtainelb]. The cal-
interface with the other mediurtwall) if nematic molecules culated phase diagrams and elastic constants for the infinite
prefer to be parallel to the surface plald. The biaxiality field case were compared with the usual case of a uniaxial
can be induced also by a disorienting figl2]. It can be nematic ordering at zero field. It was shown, for example,
either the electric or the magnetic field since many nematic¢hat the infinite disorienting field makes the pressure of spon-
have a negative anisotropy, and the molecules tend to aligraneous nematic ordering four to five times less. Thus, strong
perpendicularly to the fiel@3,4]. In this case a spontaneous disorienting fields do favor a nematic ordering. But the ques-
ordering forms a structure having two principal directions:tion arises about the strength of the field needed to achieve
(1) the direction of a disorienting field; ar@) the direction  significant changes of the physical properties. To clarify this

of spontaneous ordering lying in the plane that is perpen- point one has to investigate the general case of moderate
dicular to the field direction. The biaxiality induced by biaxiality induced by finite external fields.

strong fields appears to cause significant changes of physical In this paper we study the phase transition into a biaxial
properties. In particular, the orientational phase transitioflématic phase in the presence of finite fields. We shall con-
changes its order from the first to the second f#jelt was  Sider this biaxial phase as the “oriented” one. The phase
found[5] that the biaxiality induced by strong fields signifi- Without the spontaneous ordering will be referred to as the
cantly increases the temperature-pressure region of spontandlonoriented” one, though the latter phase possesses a
ously ordered fluid. Its ordering and elastic properties in-uniaxial anisotropy induced by the external field. We use the
crease also. Since the important technical problem inntegral equation method here. This approach does not im-
applications of anisotropic fluids is to expand the ordered?0se any approximation other than a closure for the OZ
fluid region and to increase the anisotropic properties, th€guation and allows to treat correlatiofiscluding the long-
induced biaxiality can be interesting from the practical pointrange onescorrectly. One can estimate the influence of the
of view. For example, the induced biaxiality can be useful tofield of a given strength on the region of the spontaneously
obtain mesomorphic phases in nonmesogeylstems that do ordered phase by CaICUIating the limit of orientational stabil-
not display liquid crystalline behavior usuallyRecently, ity of the “nonoriented” phase with respect to the “ori-
nematic phases were found in para_dimethwbenzene‘ Mopnted” one. It is this limit that is calculated and analyzed in
ecules of para-dimethylbenzene are nonpolar and prefer to BB€ present paper.

parallel to the surface prepared in a special way. It was

shown[6] that near such a surface hundreds of molecular |. MODEL

layers demonstrate a uniform nematic ordering with a direc-

tor parallel to the surface. The orientational ordering in this g 4 simple biaxial nematic model we propose a system
nonmesogen can be explained as a result of biaxiality IN5f uniaxial molecules in the disorienting fieW, where the

duced by the surface. . . . __potential of the molecule interaction with the field is
In Ref.[5] a nonpolar nematic model was investigated in

the infinite disorienting field, when the molecules are con-

strained to orient perpendicularly to the field direction. With v(1) :v(wl):\,\/3cog¢_1

5 . W>0, (LD

* Author to whom correspondence should be addressed. Email ads; = (6; ,¢;) being the orientation of molecuie The above
dress: ccc@icmp.lviv.ua formula assumes that the field is directed alongzthgis and
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states that molecule orientations along the field direction aréuids in the presence of an external field was considered. An
energetically unfavorableW>0). The pair potential is a orientational distribution is calculated |8] from the Lovett
sum of the hard-sphere potential for spheres of diameter equation for anisotropic fluided]
and of the anisotropic patt(1,2), 1)

v

3cofwy,— 1 lelnp(1)+lekB—T=f c(1,2V,,p(2)d(2),

0(12=vo(Ri) 75—, 1.2

(2.1
where w1, is the angle between the preferred axes of thevhereV,, is an angular gradient operater(1) is a poten-
molecules,R;, is the distance between the molecule masdial of interaction with a uniform external field, its spherical
centers, and harmonic expansion is of the form

(z0)? exd —z(Ry;—0)] B
20+l Rple 19 v(1)==2 viYio(wy), 2.2

v2(Rip) =—K

In the above formula the coefficiered)?/(zo+ 1) is placed  p(1)=pf(w,), and f(w,) is a single-particle distribution
in order to make the integralﬁjv(l,Z)Rizd R., independent function. Using the general expansion for the direct correla-
of zo. Therefore, within the mean field approach the thermo-ion function of linear molecules
dynamics of the model is independent mf. Thus,K is a
natural energy unit in this model. In the absence of the field _ JIoN *
(W=0) the model coincides with the one that was proposed c(1.9= %I Crunl (R)Ymu(©02) Yn,(02)Yin(wr) (2.3
in Ref. [7] for a uniaxial nematic. In the presence of an HA
orienting field (W<0) the system can exhibit only uniaxial and the exponential form of the one-particle distribution
paranematic and nematic phases. WWénr0, the same sys-  fynction
tem provides the phase transition into a biaxial nematic
phase. At strong disorienting fieldd&0) the molecules 4
align perpendicularly to the field, and the phase transition flw)=2 exl{lzo AYio(w)
into a limiting biaxial phase takes pla€g].

We should note some peculiarities about the disorientingyne can obtain following Ref8] an algebraic representation

field case. Even very weak disorienting field&/-+0)  of the Lovett equation for a uniaxial fluid in the external
produce a negative anisotropy along thaxis, because pre- field,

ferred axes of molecules tend to lie in teY plane that

is perpendicular to the anisotropy axis. Thus, a negative

uniaxial nematic phase\(,) of “easy plane” type appears L':% C'mYm”L”JFV':% CimPmtVi, (2.9
(see Table 4 of Refl3] and Sec. 10.2.3 of Ref4]). The

order parameter of any uniaxial nematic is usually chosen awhere all indices take positive integer valuds=v,/kgT,

an ensemble average of the second order Legendre polyn@-mnzfc%}r?o(R)dR, Yon=p(Ym(@) Y5 (0)) 0, ()0
mial: S,=(P,(cos#))=(3 cog6—1)/2, whered is the angle =[f(w)(--)dw, Li=VII+1DA, and P,
between the preferred axis of the molecule and the system ,, \/[( +1) (21 +1)(P,(cos#)),,, P (cosh) is thelth order
anisotropy axis. In the isotropic caS¢=0, in theN,, phase | egendre polynomial. Let us note that the average values
S, is negative, since particle orientations along the field di-(p (cosé)),, play the role of order parameters in uniaxial
rection are energetically unfavorable. At strong disorientinganisotropic fluids. Relation&.5) are accurate, and their use,
fields (W—c) all the molecules align perpendicularly to the as well as the use of the integrodifferential equatiart),
field (6=m/2), andS,=—1/2. In theN, phase, neverthe- does not introduce any approximation into the theory.

less, the orientational ordering in tieY planeis absent By It is customary to consider the OZ equation as a definition
increasing the system densiiyr decreasing the temperature for the direct correlation function. Sometimes, one can avoid
a preferred direction in thXY plane appears, and the phasea solution of the OZ equation and expre$4,2) via a pair
transition into a biaxial phase takes place. The direntof  interaction potentialg(1,2). For example, for very long-
the spontaneous ordering can rotate without any energy cotknge and weak interactiorisuch as those described by the
in the XY plane. Next, to be very explicit, we shall choase Kac potential the direct correlation function in the mean
along thex axis. In contrast to the induced order parameterfi€ld formc(1,2)=— ¢(1,2)kgT equals the exact one; in the

S,, the order parameter describing spontaneous ordering f#€"0-density limitc(1,2) may be written as the Mayer func-
the x direction will be positive. tion f(1,2)=exp(—¢(1,2)/kgT)—1. It should be noted that

in these limiting cases the symmetryatfL,2) coincides with

the pair potential symmetry. But in a general case the direct

correlation function of an orientationally ordered fluid loses

the rotational invariance intrinsic in the pair potential and
In order to investigate the uniaxia@onorientediphase we reflects the symmetry of the whole system. In this general

can use the results §8], where the general case of uniaxial casec(1,2) should be found from the OZ equation

, (2.9

Il. THE SINGLE-PARTICLE DISTRIBUTION FUNCTION
IN THE UNIAXIAL NONORIENTED PHASE
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h(1,2)=c(1,2)+J p(3)N(1,3¢(3,2d(3), (2.6 Maan(Rizl =0, Riz=on
(z0)? ex —2(Ry— 0)]
h(1,2) is the total correlation function of the system, and ~ Czan(R12) =BK_—— ER. o , Rp>o
d(3)=dRgdws. - 213
Due to representatio2.5) it appears to be possible to
obtain for our model in the nonoriented phase an analyticatonstitute a complete system now. It allows us to obtain
solution of the anisotropic OZ equatiof2.6) within the {|Y24?),, as a function of the model parametg@i, zo, W
mean spherical closure approximatiMSA), and »=mpo>/6. The solution of Eq(2.11) under conditions
(2.9 determines the single-particle distribution function in
the MSA. By the factorization method of Baxter and Wer-
theim (se€[10,17)) the integral equatiof2.11) for m=1 can

C(1,2):_U(1,2)/kBT, R12>(T,

h(1,2=-1, Ry<o. (2.7 be reduced to a system of algebraic equations,
We have to recall that according to Monte Carlo simulations 12, exp(zo)
for our model potential the MSA provides the most reliable E”'BK ) =D[1-Q(2)], (2.149
zZo

description of the model thermodynamid®,11]. Condition
(2.7) for h(1,2) follows directly from the fact that hard L
spheres do not overlap. The mean spherical clog2r@ ~ - _t B - =
restricts correlation functions of our model to have the form 27922121~ Q(2)]=7exp(=220)[ 1~ 2mG(2) D,
(2.19

f<1,2>=|%m fLm(RDYim(@0) Y (@), (2.8) (1 280D, 216

(11,1,=0,2), and representatig.5 results in equalities where7=7(|Yz1(w)[?),, D andCT are dimensionless coef-
ficients of the factor correlation function

A= A2p<|Y21(w)|2)wf Co21(R)dR— W,

V4 ~
Q(R)= —————[Qu(R)+D exp —zR)]
You()[?),,
Az=p(Yae(®)), f Capi( R)AR— BW. 2.9 pl¥al @) (217

Thus, the use of the mean spherical closure yields for oupith the short-range part

model’s vanishing of coefficient8, with [>2 in Eq. (2.4), -

and the self-consistent one-particle distribution function in Qo(R)=C[exp(—zR) —exp(~z0)], R<o,

the MSA takes the form (2.18

Qo(R)=0, R>o. (2.19
f(w)=eX|:[A2Y20(w)] feXF[AzYzo(w)]dw
(2.10 Q(z) andam(z) are the dimensionless Laplace transforms
of Q(R) andhyy(R), respectively,

A uniaxial symmetry of our system leads to factorization of
Eq. (2.6) on the equations with differemt. At m=+1, +2,

Q(2)= P<|Y21(w)|2>wf0weith(t)dt,
h2am(R12) = Coam(R12)

~ Y 2 (e
+P<|Y2m(w)|2>wf C2am( R13) h2om(R32) dRs. O201(2)= MJ

2.1

219 From the definition of the factor correlation function it fol-
For m=0 we have a system of integral equations that aftetows that
the Fourier transformation gains the matrix form

e Zthy,(t)tdt.  (2.20

(o8

1_P<|Y21(w)|2>wf Coi(RIAR=[Q(k=0)]?,
Hij(k):Cij(k)+2 Cii (K)pirj Hjrj(k), (212
o (2.21
where  Hij(K)=h;jo(k), Cij(K)=cijo(k), and p; whereQ(k) is defined by the expression
=p(Yio(®)Yjo(®)),, indices take the values 0 and 2.

Equations(2.9) and (2.11) for m= =1 within the MSA Q(k)=1—p(|Y (w)|z> fdeékRQ(R)_ (2.22
for the corresponding harmonics 2t “Jo
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The joint use of Eqs(2.21) and(2.9) gives us the additional A  solution of Eq. (228 with (|Yp(w)|?),,

equation to determingYy(w)|?),,, =(L¥sirfgcos),, where averaging- - -), is made with
the self consistenf(w) defined by Eq.(2.10, gives us

Q(k=0)= /—,BW. 2.23 <|Y21(a>)|2>w_andA2._Furth_er calculation of average values

A can be carried out in a simple arithmetic way. First, EQs.

(2.9 yield Ay =(Y,o(®)),/{|Y21(®)|?),. Thus, one obtains

In a more explicit form the above equation reads (P,(cosh)),=(Yoo(w)),/\5 expressed in terms of
{|Y21(@)|?), and A,. On the other hand, one can use the
= e _ [—BW well-known expressions fdiY,(w)|? in terms of Legendre
V=D+dC, V=1~ A, (2.24 polynomials(see, for exampld,13]),
whered=e ??’A,(zo). Here and below we use the symbols ’ 5 12
Yo (w)|?=1+ 7 P,(cos)— 2 P,(cos#b),
n
1
An(X)=expx)— >, |_|XI' (2.25
i=o I!

’ 10 3
Yo w)|?=1— 7P2(cos¢9)+ 7P4(cosa),

Formulas(2.24), (2.15, and(2.16) allow to determineD,
and expres$|Y22(w)|2>w via <|Y21(w)|2>w andA,,

- —b—b’-4ac
b= 2a : (2.26 15
(Y2 )%= gsin‘m
where ¢
2 _5 A2<|Y21|2>w <|Y21|2>w
a=-—dexp(—2zo)—(d—1)[d—VA{(—z0)], =7 1- 5 -z .
c=V[2d—VA3(—z0)], (2.29
b=(d—1)c/V+V[VA§(—z<r)—d]+dVexp(—22(r). In an analogous way, one can find the last orientational av-

erage contained in E¢2.12),

(2.27)

10 18
It should be noted that the signs before square roots in Egs. (| Y2 ®)|?),=1+ 7(Pz(0050)>w+7<P4(COS9)>w-
(2.23 and(2.26 are chosen to provide the physical solution.
Now from Eg.(2.14) we can obtain the dependence be-
tween the ordering parametél,,(w)|?),, and the system lll. THE STABILITY OF THE MODEL

parametersy, SK, SW/A,, andzo, In the previous section we obtained the single-particle dis-

tribution function and, therefore, all order parameters. Now
we can investigate the stability condition of the nonoriented
uniaxial phase with respect to the spontaneous ordering into
f(zo,V)= 35 o the biaxial nematic. A problem of this kind for the caaé

d =0 and the pair potentidll.2) and (1.3) was solved in the
well-known paper by Kloczkowski and StedKki]. The local

IBK 77<|Y21(w)|2>w: f(ZO',V),

2
_Bl1- Ag(—z0)|| zo+1 (2.29 stability condition of the isotropic phase with respect to
d expzo)’ ' uniaxial variations of the distribution function
3,k T/K wy 5y 1 01, a 3-kT/K ooy 5 1, b)
0
25 7o =01 251 262 0.1
2 24 0

FIG. 1. Orientational instability lines for dif-
15 151 ferent ranges of the pair potentidh) zo=0.1;

(b) zo=2. The numbers attached to the lines are
1 14 values of the disorienting fieltV/K.

Q 0.1 0.2 0.3 04 0.5 06 0 0.1 02 0.3 04 0.5 0.6
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0 1 2 3 4 5 TABLE I. Temperature of instability aty=0.3 for different
0 ' ' ' ' x T/K' ranges of interactiozo and its growth in an external disorienting

-0.05 - B field (the field strengthW/K is specified in parentheses after
=kgT/K).

011 /K =0.1

0.15 { zo  t(0) t(0.1)A(0) t(1)/t(0) t(5)/t(0) t(=)/t(0)

021 01 144 1.16 1.43 1.68 15/8

025 | WK =1 2 1.11 1.23 1.50 1.72 15/8

0.3 1

0351 ity condition with respect to the biaxial phase we can con-

0.4 W/K=5 sider variationsdp(1)=pg(1l)—p(1l) in Eq. (3.3. These

045 variations can contain terms like E@.1) that describe fluc-
tuations ofS, and can have terms of a new type,

0575,

Sp(1)~S{ Yo w1) + Y5 (w1)], (3.9

FIG. 2. The order paramet&,=((3 cog6—1)/2),, in the insta-
bility points for finite fieldsW/K. Thin lines correspond tao

=0.1; thick lines show the results far=2.

[}

5p(i>=;0 sLP.(cosé;)

(3.9

was written in Ref[7],

o6(1,2

f d(l)d(Z)[W—c(l,Z) 5p(1)8p(2)>0, (3.2

that describe fluctuations connected with appearance of the
new biaxial symmetry. We note that in E®@.5) we retained
only the lowest term. Inserting these simplest variations into
Eq. (3.3 and taking into account the MSA form of the direct
correlation function(2.8), one obtains

1—<|Y22|2>wpf Co2A R)dR>0. (3.6

In other words, the system becomes orientationally unstable

. ) . ~with respect to spontaneous biaxial nematic ordering at
wherec(1,2) was the direct correlation function of the iso-

tropic phase. More general stability conditions of nematic
phases were discussed[it¥,17. It is worth noting that the
stability condition of nematics at zero field has some special

features. The point is that rotations of the director of spony, order to obtain conditiof3.7) in an explicit and analytical
taneous ordering do not change the nematic free energy. Thigym one can use results and the method of the previous
results in Goldstone mode singularities that are connectegaction. The factorization method applied to 211 with

with the long-range correlations of the director fluctuations.,— o yields the same systef@.14—(2.16 that we got for

A detailed discussion of these singularities within the inte-m: 1 with the only difference?= (| Y »o(®)|?), . Equa-

gral equation approach was presentefili®,12,14. Here we . . " A T2
guote the stability condition in the presence of the fiald ( tion (3.7) gives an additional condition like Eq2.24), but

1_<|Y22|2>wpf C22A R)dR=0. (3.7

~0) with V=1,
1=D+dC. (3.9
fd(l)d(z)[6<1,2>—c<1,2)p<1)]5p*<1)6p<2>>o,
(3.3  As aresult one obtains an explicit form for E§.7)
where p(1) andc(1,2) are the single-particle distribution K _ )
function and the direct correlation function of the non- —=1(| Yo ©)[%), = f(zo,V=1), (3.9

oriented uniaxial fluid, * means a complex conjugation, and KeT
where equilibrium(|Y,(w)|?),, has to be calculated from
Egs.(2.29 and(2.28 at temperaturd and densityy for a

given fieldW. If Eq. (3.9 is satisfied, it means thaff ( 7,
is a general orientational variation of the distribution func-W) is an instability point.
tion.

Any nonpolar biaxial phase is characterized by two
nontrivial order parameters:S,=(P,(cosé))s and S,
=(sirfg cos(2p))g, and S, is proportional to (Y x(w;) Let us consider E(3.9) in two limiting cases, when one
+Y3,(w1))g. The subscripB means the averaging with a can do without Eqs(2.29 and (2.28. At zero field (W
biaxial orientational distributiopg(1). To obtain the stabil- —0) the nonoriented phase coincides with the isotropic

Sp(1)=2 ALY (1) (3.4

lu

IV. RESULTS AND CONCLUSIONS
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phase, and| Y w)|?),=1. In this case Eq3.9) gives the instability are »=0.57 at W/K=0.1 and =0.47 at
instability condition of the isotropic phase with respect to theW/K=1.

nematic phase formatiofiz,12]. At the infinite field W Small fields in the region of small densitiéand low tem-

— ) (|Y(®)|?),=15/8, and Eq(3.9) transforms into the peratures produce orientationally ordered phases very effi-
instability condition with respect to the limiting biaxial phase ciently. In Fig. 1 all curves for nonzero fields coincide at

[5]. In both the casesK(/kB?);depends oo only. There-  Very Ipw Fempe.ratures. But, it is exp(_actgd that instability
fore, the corresponding instability points lie on straight lineslines in this region are under the gas-liquid binodal. There-
in the temperature-density coordinatese Fig. L This is a fore, this point needs an additional investigation as it was
consequence of a symmetry of the MSA solution we foungdone forwW=0 [15] andW= [5] cases. On the other hand,
in the previous section: Eq(2.28 shows that at fixed the undesirable condensation can be suppressed, for ex-
(K/kgT)n and (W/ksT) the orientational distribution is ample, by _|nclu5|on of an additional isotropic repulsion be-
fixed, and the equilibrium value @fY,(®)|?),, is constant. tween particles. _ o _
Then, it follows from orientational instability conditio(3.9) In this paper we studied a system of uniaxial particles
that if we change the field strengW proportionally to the placed in an ex.ternal_ dlsorllentlng'fleld_. Such a system dem-
temperature(keeping W/ksT constan), the orientational —Onstrates an or_lentatlonal mstgblllty Wlth respect to a spon-
instability points will belong to a straight line in the taneous formation of the biaxial nematic phase. Using the
temperature-density coordinates. Wt=0 and atW=c any integral equation method we derived the orientational insta-
temperature scaling does not chaigéksT, which results in bility condition in an e>_<p|i9it form, which permitted to s_tudy
straight instability lines at the fixed field strength. The situ-the effect of the disorienting external field on the region of
ation differs at a finitaV. In this case the orientational dis- the spontaneously ordered nematic phase. This condition
tribution in orientational instability pointgand all its mo- ~ turns into known results for the limiting cases of zero or
ments(---),) depends on both the temperature and thdnfinite fields. The instability lines we obtained coincide with
density. Therefore, instability points in the general case lighe biaxial ordering lines if the phase transition is of the
on a curve. second order. This actually takes place for strong enough
In Fig. 2 the order paramete, in instability points is felds. , o
plotted against the temperature at different values of the field QUr calculation shows that even small disorienting fields
W/K=0.1; 1: 5. Let us note tha, equals 0 aW/K =0, and significantly raise the instability temperature and, therefore,
S, equals—1/2 atW/K =x=. One can see that the effect of noticeably favor the nematic phase. The effect of small fields
the field onS, in instability points is stronger in the case of aPPears to be especially visible in the systems with short-
a short-range potentiazé=2). The difference between the "219€ anisotropic interactions between patrticles. It turns out
field effects at differenzo is especially noticeable for weak that even weak disorienting field¥\(less than 0#gT) sig-
fields and high temperatures. At low temperatures or strong!f'ca,mly, fa\/fquda nem?tm ordhenng. The point is thatdthe
fields the results for differerto are hardly distinguishable. diSorienting field transtorms the system symmetry and re-
It follows also from Fig. 2 that at low temperaturSs tends stricts the orientation space where particles can be present

to —1/2 for all fields. It means that at low enough tempera-W'th some probability. .The _stronggr Fhe _f|elgl, the_ more
tures even a weak field forces molecules to lie in ¥ peaked atf= /2 the orientational distribution is. Orienta-

plane, as very strong fields do tional fluctuations act against the field influence and weaken

Figure 1 presents the set of instability lines, at which thet.he induced ordering. They role is very noticeable for weak
elds, of course. There is a peculiarity about the case of

system becomes orientationally unstable with respect to the: > tinu fields: onl entational fluctuatin th
spontaneously ordered phase. This phase is biax¥i>aD lisorienting Tields. only oneé orientational fluctua iGn €
field direction counteracts the induced ordering with a

and is uniaxial atW=0. One can see in Fig. 1 that the . NI
9 negative order paramete$,. Thus, weak disorienting

disorienting field raises the instability lingn other words, field trict the effect | ficientl h
favors the orientational orderipngand the effect of finite I€lds can restrict tne eliective angie space €efliciently enoug
nd, eventually, further the spontaneous ordering into

fields is stronger in the system with shorter ranges of th%} biaxial bh | tice it i I fields that
anisotropic potential Zoc=2). The latter fact is also illus- € biaxial pnaseé. In practice 1t 1S small nields that are
trated by Table I. For example, the fielti=0.1K raises the usually employed. Therefore, we believe that disorienting

instability temperature by 23% farto=2, whereas forzo ﬂelds of different prigin_s can b.e useful in various appliqa-
—0.1 the increase is 16%. One can see from our results thaPns of anisotropic fluids, besides broadly used orienting
the disorienting field influence in systems with short—range'elds'
anisotropic interactions can lead to qualitative changes.

For example, in Fig. (b) for zo=2 at kgT/K=2.5 the
zero-field instability line is in the dense packing region. The
disorienting field shifts the orientational instability and can T.G.S. and M.F.H. thank the Science and Technology
place the spontaneous nematic ordering before the syste@enter of the Ukraine for partial support of this research
crystallization: atkgT/K=2.5 the densities of orientational (Grant No. 144Y.

ACKNOWLEDGMENTS

(1]
051710-6



NEMATIC MODEL IN THE PRESENCE OF AFINIE .. .. PHYSICAL REVIEW E 64 051710

[1] M.M. Telo da Gama and P. Tarazona, Phys. Revi1A1149 R3819(1999.

(1990. [9] R.A. Lovett, C.Y. Mou, and F.P. Buff, J. Chem. Phg§, 570
[2] C.P. Fan and M.J. Stephen, Phys. Rev. L2%.500 (1970. (1976.
[3] F. Egbert, L. Longa, and W.H. de Jeu, Phys. RER5, 195  [10] T.G. Sokolovska, Physica 853 459 (1998.

(19886. [11] A. Perera, Phys. Rev. B0, 2912(1999.
[4] S. Singh, Phys. Ref824, 107 (2000. [12] M.F. Holovko and T.G. Sokolovska, J. Mol. Lif2, 161
[5] T.G. Sokolovska, R.O. Sokolovskii, and M.F. Holovko, Phys. (1999.

Rev. E62, 6771(2000. [13] C.G. Gray and K.E. Gubbin3heory of Molecular Fluids, Vol.
[6] B.V. Derjaguin, B.A. Altoiz, and J.J. Nikitenko, J. Colloid 1: FundamentalgClarendon Press, Oxford, 1984. 626.

Interface Scil45 441(1992); B.A. Altoiz, Yu.M. Popovskij,
and A.Yu. Popovskij, Mol. Mater5, 113 (1999, and refer-
ences therein.

[7] A. Kloczkowski and J. Stecki, Mol. Phyd6, 13 (1982.

[8] T.G. Sokolovska and R.O. Sokolovskii, Phys. Rev.58

[14] T.G. Sokolovska and M.F. Holovko, Condens. Matter Phys.
11, 109(1997.

[15] T.G. Sokolovska, M.F. Holovko, and R.O. Sokolovskii, Ukr.
Fiz. Zh. 42, 1304(1997.

051710-7



